數(shù)學(xué)思想論文范文10篇
時間:2024-05-07 04:09:01
導(dǎo)語:這里是公務(wù)員之家根據(jù)多年的文秘經(jīng)驗,為你推薦的十篇數(shù)學(xué)思想論文范文,還可以咨詢客服老師獲取更多原創(chuàng)文章,歡迎參考。
數(shù)學(xué)思想分析論文
一、“數(shù)學(xué)思想”教育研究的重要意義
日本數(shù)學(xué)家米山國藏指出:多數(shù)學(xué)生進(jìn)入社會后,幾乎沒有機(jī)會應(yīng)用他們在學(xué)校所學(xué)到的數(shù)學(xué)知識,因而這種作為知識的數(shù)學(xué),通常在學(xué)生出校門后不到一兩年就忘掉了,然而不管人們從事什么業(yè)務(wù)工作,那種銘刻于大腦的數(shù)學(xué)思想?yún)s長期在他們的生活和工作中發(fā)揮著重要作用。
為便于進(jìn)行“數(shù)學(xué)思想”的教育研究,本文圍繞“數(shù)學(xué)思想”的內(nèi)涵、分類、特點和功能等問題作些基礎(chǔ)工作。
二、數(shù)學(xué)思想的內(nèi)涵和分類
數(shù)學(xué)思想是幾千年數(shù)學(xué)探索實踐所創(chuàng)造的精神財富。根據(jù)數(shù)學(xué)哲學(xué)的近代研究,所謂數(shù)學(xué)思想指的是數(shù)學(xué)活動中的價值觀念和行為規(guī)范。數(shù)學(xué)思想的內(nèi)涵十分豐富,主要有數(shù)學(xué)創(chuàng)新思想、數(shù)學(xué)求真思想、數(shù)學(xué)理性思想、數(shù)學(xué)合作與獨立思考思想等。限于篇幅,本文重點僅就其中三種數(shù)學(xué)思想進(jìn)行論述。
三、數(shù)學(xué)創(chuàng)新思想
數(shù)學(xué)思想簡論研究論文
摘要:探索和追求精益求精的計算方法和技巧,講究明確的思想依據(jù),著力于靈活和廣泛的應(yīng)用,是“算經(jīng)十書”的數(shù)學(xué)思想精粹。其發(fā)展主線是沿著探索、完善和提高“推步”前進(jìn)的。它把擅長計算的推算和證明的推類結(jié)合起來,形成獨特的傳統(tǒng)風(fēng)格和手段。
關(guān)鍵詞:算經(jīng)十書,傳統(tǒng)數(shù)學(xué)思想,新理解
Abstract:Exploringandstrivingfortheconstantlyimprovingmethodsandtechniquesofcalculation,stressingtheexplicitthinkingbasis,andconcentratingonitsflexibleandwideapplicationisthepithofthemathematicideasofSuanjingshishu,thethreadofwhichisadvancingalongtheexploration,improvementanddevelopmentoftuibu(thescienceofcalculatingtheastronomiccalendar).Itcombinescalculationwithanalogy,andthus,formsitsuniquetraditionalstyleandmethod.
KeyWords:SuanJingShiShu,TraditionalMathematicalThinking,newunderstanding
在世界科學(xué)史中,中國傳統(tǒng)數(shù)學(xué)是一顆燦爛的明珠。在中國傳統(tǒng)數(shù)學(xué)中,“算經(jīng)十書”是典型的代表。所謂“算經(jīng)十書”,指的是中國十部古算書:《周髀算經(jīng)》、《九章算術(shù)》、《孫子算經(jīng)》、《五曹算經(jīng)》、《夏侯陽算經(jīng)》、《張丘建算經(jīng)》、《海島算經(jīng)》、《五經(jīng)算術(shù)》、《綴術(shù)》(元豐年間已失傳,后來以《數(shù)術(shù)記遺》代之)、《緝古算經(jīng)》。唐代時期,國子監(jiān)內(nèi)設(shè)算學(xué)館,置有博士、助教,指導(dǎo)學(xué)生學(xué)習(xí)數(shù)學(xué),規(guī)定這十部書為課本。許多人為這十部算書作注釋,作增補(bǔ)刪改,歷代華夏子孫學(xué)習(xí)它,研究它,中國數(shù)學(xué)也因它而形成自身的傳統(tǒng)并將此傳統(tǒng)繼承和發(fā)揚(yáng)?!八憬?jīng)十書”就其內(nèi)容來說,屬于初等數(shù)學(xué);就其數(shù)學(xué)思想和數(shù)學(xué)方法來說,則是十分高深的。下面,我們闡述其數(shù)學(xué)思想。
1.探索和追求精益求精的計算方法和技巧
數(shù)學(xué)思想數(shù)學(xué)分析論文
以素質(zhì)教育為導(dǎo)向的初中數(shù)學(xué)教學(xué)大綱明確指出:“初中數(shù)學(xué)的基礎(chǔ)知識主要是初中代數(shù)、幾何中的概念、法則、性質(zhì)、公式、公理、定理及其內(nèi)容所反映出來的數(shù)學(xué)思想和方法?!笨梢姅?shù)學(xué)思想和方法已提高到不容忽視的重要地位。素質(zhì)教育下的數(shù)學(xué)教學(xué)更注重數(shù)學(xué)品質(zhì)的培養(yǎng)和數(shù)學(xué)能力的提高,這較以題海戰(zhàn)為主、靠成績說話的應(yīng)試教育上升了一個新的臺階。在這新的臺階上,數(shù)學(xué)教師面臨著一個新的課題——如何“滲透數(shù)學(xué)思想,掌握數(shù)學(xué)方法,走出題海誤區(qū)?!蔽覀兊淖龇ㄊ牵憾苏凉B透思想,更新教育觀念,明確思想方法的內(nèi)涵,強(qiáng)化滲透意識,制定滲透目標(biāo);在數(shù)學(xué)思想上重滲透,數(shù)學(xué)方法上重掌握,滲透途徑上重探索,數(shù)學(xué)訓(xùn)練上重效果。
一、端正滲透思想更新教育觀念
縱觀數(shù)學(xué)教學(xué)的現(xiàn)狀,應(yīng)該看到,應(yīng)試教育向素質(zhì)教育轉(zhuǎn)軌的過程中,確實有很多弄潮兒站到了波峰浪尖,但也仍有一些數(shù)學(xué)課基本上還是在應(yīng)試教育的慣性下運行,對素質(zhì)教育只是形式上的“搖旗吶喊”,而行動上卻留戀應(yīng)試教育“按兵不動”,缺乏戰(zhàn)略眼光,因而至今仍被困惑在無邊的題海之中。
究竟如何走出題海,擺脫那種勞民傷財?shù)拇筮\動量的機(jī)械訓(xùn)練呢?我們認(rèn)為:堅持滲透數(shù)學(xué)思想和方法,更新教育觀念是根本。要充分發(fā)掘教材中的知識點和典型例題中所蘊(yùn)含的數(shù)學(xué)思想和方法,依靠數(shù)學(xué)思想指導(dǎo)數(shù)學(xué)思維,盡量暴露思維的全過程,展示數(shù)學(xué)方法的運用,大膽探索,會一題明一路,以少勝多,這才是走出題海誤區(qū),真正實現(xiàn)教育轉(zhuǎn)軌的新途徑。
二、明確數(shù)學(xué)思想和方法的豐富內(nèi)涵
所謂數(shù)學(xué)思想就是對數(shù)學(xué)知識和方法的本質(zhì)及規(guī)律的理性認(rèn)識,它是數(shù)學(xué)思維的結(jié)晶和概括,是解決數(shù)學(xué)問題的靈魂和根本策略。而數(shù)學(xué)方法則是數(shù)學(xué)思想的具體表現(xiàn)形式,是實現(xiàn)數(shù)學(xué)思想的手段和重要工具。數(shù)學(xué)思想和數(shù)學(xué)方法之間歷來就沒有嚴(yán)格的界限,只是在操作和運用過程中根據(jù)其特征和傾向性,分為數(shù)學(xué)思想和數(shù)學(xué)方法。一般說來,數(shù)學(xué)思想帶有理論特征,如符號化思想,集合對應(yīng)思想,轉(zhuǎn)化思想等。而數(shù)學(xué)方法則具有實踐傾向,如消元法、換元法、配方法、待定系數(shù)法等。因此數(shù)學(xué)思想具有抽象性,數(shù)學(xué)方法具有操作性。數(shù)學(xué)思想和數(shù)學(xué)方法合在一起,稱為數(shù)學(xué)思想方法。
數(shù)學(xué)思想轉(zhuǎn)化應(yīng)用論文
在數(shù)學(xué)教學(xué)中,怎樣寓知識、技能、方法、思想于一個統(tǒng)一教學(xué)過程中,是數(shù)學(xué)教學(xué)的重要課題。由于數(shù)學(xué)的高度抽象性、嚴(yán)謹(jǐn)?shù)倪壿嬓?、結(jié)論的確定性以及應(yīng)用的廣泛性這些特征,決定了數(shù)學(xué)教學(xué)的難度。如果教師只是注重單純地傳授知識,而不注重學(xué)習(xí)方法的指導(dǎo)和能力的培養(yǎng),學(xué)生就會跟在老師的后面跑,整天忙忙碌碌,全是死記硬背。聽老師講時還會,自己做時就錯,臨到考時就蒙,這樣下去是越來越糊涂。所以,要使學(xué)生變書本知識為自己知識,就必須學(xué)會學(xué)習(xí)知識的方法。下面就其怎樣使學(xué)生在原有知識基礎(chǔ)上學(xué)習(xí)新知識的方法談些教學(xué)體會。
新知識的獲得,離不開原有認(rèn)知基矗很多新知識都是學(xué)生在已有知識基礎(chǔ)上發(fā)展起來的。因此,對于學(xué)生來講,學(xué)會怎樣在已有知識的基礎(chǔ)上掌握新知識的方法是非常必要的。這就需要教師在教學(xué)中精心設(shè)計、抓住知識的生長點、促進(jìn)正遷移的實現(xiàn)。
例如,在研究多邊形內(nèi)角和定理時,可向?qū)W生提出:我們已經(jīng)知道三角形的內(nèi)角和等于180°,那么,你能根據(jù)三角形的內(nèi)角和求出四邊形的內(nèi)角和嗎?這樣簡單、明了的一句話就勾通了新舊知識間的內(nèi)在聯(lián)系。問題的提出,激發(fā)了學(xué)生學(xué)習(xí)的興趣,促使了學(xué)生思維的展開,提供了回答問題的機(jī)會,創(chuàng)造了活躍的教學(xué)氣氛,學(xué)生會準(zhǔn)確地回答出四邊形的內(nèi)角和等于360°。又問:你是根據(jù)什么說四邊形的內(nèi)角和等于360°呢?是猜想的?還是推理得到的?學(xué)生的回答是作四邊形的對角線,將四邊形分為兩個三角形,而每個三角形的內(nèi)角和等于180°,兩個三角形的內(nèi)角和等于360°。教師馬上對學(xué)生的回答給以肯定和鼓勵,再問:五邊形、六邊形的內(nèi)角和等于多少度?學(xué)生很快就會回答出五邊形的內(nèi)角和等于540°,六邊形的內(nèi)角和等于720°。接著又問:你知道十邊形、一百邊形、一千邊形的內(nèi)角和是多少度嗎?這是老師故意設(shè)置“知識障礙”,激發(fā)學(xué)生的求知欲望。及時引導(dǎo)、啟發(fā)、遷移、總結(jié)規(guī)律。讓學(xué)生觀察、發(fā)現(xiàn)求四邊形、五邊形、六邊形的內(nèi)角和,都是從它們的一個頂點作對角線將它們轉(zhuǎn)化為三角形來求得的,并且內(nèi)角和是由從它們的一個頂點作對角線所分得三角形的個數(shù)確定的,而三角形的個數(shù)又是由這個多邊形的邊數(shù)確定的。從而可知從n邊形的一個頂點作對角線可將n邊形分成(n-2)個三角形,所以n邊形的內(nèi)角的和等于(n-2)·180°,即得多邊形的內(nèi)角和定理。這個定理的出現(xiàn),是教者通過設(shè)疑、引導(dǎo)、啟發(fā)學(xué)生思維,尋求解題方法,由個性問題追朔到共性問題,總結(jié)出了一般規(guī)律。這樣做,不但使學(xué)生學(xué)會了在原有知識基礎(chǔ)上學(xué)習(xí)新知識的方法,又培養(yǎng)了學(xué)生分析問題和解決問題的能力,還滲透了把多邊形轉(zhuǎn)化為三角形來研究的數(shù)學(xué)轉(zhuǎn)化思想。
當(dāng)學(xué)生在原有知識的基礎(chǔ)上掌握了學(xué)習(xí)新知識的方法和數(shù)學(xué)的轉(zhuǎn)化思想,對于諸如此類的問題就迎刃而解了。如,研究梯形中位線定理,學(xué)生很自然就會將它轉(zhuǎn)化為三角形中位線來解決。對于平行四邊形、梯形的問題學(xué)生也很容易就想到轉(zhuǎn)化為已有知識來研究。又如,對于解二元二次方程組,學(xué)生根據(jù)已學(xué)過的解一元二次方程等知識,自然就會想到通過消元將原方程組轉(zhuǎn)為一元二次方程來解之,或?qū)⒍畏匠探M通過降次轉(zhuǎn)化為一次方程或有一個一次方程和一個二次方程組來解決。對于分式方程要通過去分母或換元轉(zhuǎn)化為整式方程來解。對于無理方程需把方程兩邊乘方或換元化為有理方程來解。
在數(shù)學(xué)教學(xué)中,教師只要做到精心設(shè)計教學(xué)環(huán)節(jié),科學(xué)的提出問題,采取得體的教學(xué)方法、適時疏導(dǎo),幫助學(xué)生學(xué)會用自己的語言對所學(xué)知識進(jìn)行概括和總結(jié),以知識講方法,以方法取知識,就能夠調(diào)動學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,達(dá)到開發(fā)學(xué)生智力、提高學(xué)生能力的目的。
數(shù)學(xué)思想功能研究論文
中學(xué)數(shù)學(xué)教學(xué)過程,實質(zhì)上是運用各種教學(xué)理論進(jìn)行數(shù)學(xué)知識教學(xué)的過程。在這個過程中,必然要涉及數(shù)學(xué)思想的問題。因為數(shù)學(xué)思想是人類思想文化寶庫中的瑰寶,是數(shù)學(xué)的精髓,它對數(shù)學(xué)教育具有決定性的指導(dǎo)意義。本文對這個概念的意義及在教學(xué)中的作用作一探討。希望能再引起廣大數(shù)學(xué)教育工作者的關(guān)注。
一、對中學(xué)數(shù)學(xué)思想的基本認(rèn)識
“數(shù)學(xué)思想”作為數(shù)學(xué)課程論的一個重要概念,我們完全有必要對它的內(nèi)涵與外延形成較為明確的認(rèn)識。關(guān)于這個概念的內(nèi)涵,我們認(rèn)為:數(shù)學(xué)思想是人們對數(shù)學(xué)科學(xué)研究的本質(zhì)及規(guī)律的理性認(rèn)識。這種認(rèn)識的主體是人類歷史上過去、現(xiàn)在以及將來有名與無名的數(shù)學(xué)家;而認(rèn)識的客體,則包括數(shù)學(xué)科學(xué)的對象及其特性,研究途徑與方法的特點,研究成就的精神文化價值及對物質(zhì)世界的實際作用,內(nèi)部各種成果或結(jié)論之間的互相關(guān)聯(lián)和相互支持的關(guān)系等。可見,這些思想是歷代與當(dāng)代數(shù)學(xué)家研究成果的結(jié)晶,它們蘊(yùn)涵于數(shù)學(xué)材料之中,有著豐富的內(nèi)容。
通常認(rèn)為數(shù)學(xué)思想包括方程思想、函數(shù)思想、數(shù)形結(jié)合思想、轉(zhuǎn)化思想、分類討論思想和公理化思想等。這些都是對數(shù)學(xué)活動經(jīng)驗通過概括而獲得的認(rèn)識成果。既然是認(rèn)識就會有不同的見解,不同的看法。實際上也確實如此,例如,有人認(rèn)為中學(xué)數(shù)學(xué)教材可以用集合思想作主線來編寫,有人認(rèn)為以函數(shù)思想貫穿中學(xué)數(shù)學(xué)內(nèi)容更有利于提高數(shù)學(xué)教學(xué)效果,還有人認(rèn)為中學(xué)數(shù)學(xué)內(nèi)容應(yīng)運用數(shù)學(xué)結(jié)構(gòu)思想來處理等等。盡管看法各異,但筆者認(rèn)為,只要是在充分分析、歸納概括數(shù)學(xué)材料的基礎(chǔ)上來論述數(shù)學(xué)思想,那么所得的結(jié)論總是可能做到并行不悖、互為補(bǔ)充的,總是能在中學(xué)數(shù)學(xué)教材中起到積極的促進(jìn)作用的。
關(guān)于這個概念的外延,從量的方面講有宏觀、中觀和微觀之分。
屬于宏觀的,有數(shù)學(xué)觀(數(shù)學(xué)的起源與發(fā)展、數(shù)學(xué)的本能和特征、數(shù)學(xué)與現(xiàn)實世界的關(guān)系),數(shù)學(xué)在科學(xué)中的文化地位,數(shù)學(xué)方法的認(rèn)識論、方法論價值等;屬于中觀的,有關(guān)于數(shù)學(xué)內(nèi)部各個部門之間的分流的原因與結(jié)果,各個分支發(fā)展過程中積淀下來的內(nèi)容上的對立與統(tǒng)一的相克相生的關(guān)系等;屬于微觀結(jié)構(gòu)的,則包含著對各個分支及各種體系結(jié)構(gòu)中特定內(nèi)容和方法的認(rèn)識,包括對所創(chuàng)立的新概念、新模型、新方法和新理論的認(rèn)識。
數(shù)學(xué)思想教學(xué)分析論文
中學(xué)數(shù)學(xué)教學(xué)過程,實質(zhì)上是運用各種教學(xué)理論進(jìn)行數(shù)學(xué)知識教學(xué)的過程。在這個過程中,必然要涉及數(shù)學(xué)思想的問中學(xué)數(shù)學(xué)教學(xué)過程,實質(zhì)上是運用各種教學(xué)理論進(jìn)行數(shù)學(xué)知識教學(xué)的過程。在這個過程中,必然要涉及數(shù)學(xué)思想的問題。因為數(shù)學(xué)思想是人類思想文化寶庫中的瑰寶,是數(shù)學(xué)的精髓,它對數(shù)學(xué)教育具有決定性的指導(dǎo)意義。本文對這個概念的意義及在教學(xué)中的作用作一探討。希望能再引起廣大數(shù)學(xué)教育工作者的關(guān)注。
一、對中學(xué)數(shù)學(xué)思想的基本認(rèn)識
“數(shù)學(xué)思想”作為數(shù)學(xué)課程論的一個重要概念,我們完全有必要對它的內(nèi)涵與外延形成較為明確的認(rèn)識。關(guān)于這個概念的內(nèi)涵,我們認(rèn)為:數(shù)學(xué)思想是人們對數(shù)學(xué)科學(xué)研究的本質(zhì)及規(guī)律的理性認(rèn)識。這種認(rèn)識的主體是人類歷史上過去、現(xiàn)在以及將來有名與無名的數(shù)學(xué)家;而認(rèn)識的客體,則包括數(shù)學(xué)科學(xué)的對象及其特性,研究途徑與方法的特點,研究成就的精神文化價值及對物質(zhì)世界的實際作用,內(nèi)部各種成果或結(jié)論之間的互相關(guān)聯(lián)和相互支持的關(guān)系等。可見,這些思想是歷代與當(dāng)代數(shù)學(xué)家研究成果的結(jié)晶,它們蘊(yùn)涵于數(shù)學(xué)材料之中,有著豐富的內(nèi)容。
通常認(rèn)為數(shù)學(xué)思想包括方程思想、函數(shù)思想、數(shù)形結(jié)合思想、轉(zhuǎn)化思想、分類討論思想和公理化思想等。這些都是對數(shù)學(xué)活動經(jīng)驗通過概括而獲得的認(rèn)識成果。既然是認(rèn)識就會有不同的見解,不同的看法。實際上也確實如此,例如,有人認(rèn)為中學(xué)數(shù)學(xué)教材可以用集合思想作主線來編寫,有人認(rèn)為以函數(shù)思想貫穿中學(xué)數(shù)學(xué)內(nèi)容更有利于提高數(shù)學(xué)教學(xué)效果,還有人認(rèn)為中學(xué)數(shù)學(xué)內(nèi)容應(yīng)運用數(shù)學(xué)結(jié)構(gòu)思想來處理等等。盡管看法各異,但筆者認(rèn)為,只要是在充分分析、歸納概括數(shù)學(xué)材料的基礎(chǔ)上來論述數(shù)學(xué)思想,那么所得的結(jié)論總是可能做到并行不悖、互為補(bǔ)充的,總是能在中學(xué)數(shù)學(xué)教材中起到積極的促進(jìn)作用的。
關(guān)于這個概念的外延,從量的方面講有宏觀、中觀和微觀之分。
屬于宏觀的,有數(shù)學(xué)觀(數(shù)學(xué)的起源與發(fā)展、數(shù)學(xué)的本能和特征、數(shù)學(xué)與現(xiàn)實世界的關(guān)系),數(shù)學(xué)在科學(xué)中的文化地位,數(shù)學(xué)方法的認(rèn)識論、方法論價值等;屬于中觀的,有關(guān)于數(shù)學(xué)內(nèi)部各個部門之間的分流的原因與結(jié)果,各個分支發(fā)展過程中積淀下來的內(nèi)容上的對立與統(tǒng)一的相克相生的關(guān)系等;屬于微觀結(jié)構(gòu)的,則包含著對各個分支及各種體系結(jié)構(gòu)中特定內(nèi)容和方法的認(rèn)識,包括對所創(chuàng)立的新概念、新模型、新方法和新理論的認(rèn)識。
數(shù)學(xué)素質(zhì)思想訓(xùn)練論文
數(shù)學(xué)思想方法是指數(shù)學(xué)本身的論證、運算以及應(yīng)用的思想、方法和手段。實踐證明,教師依據(jù)數(shù)學(xué)教材的特點和學(xué)生的認(rèn)知規(guī)律,圍繞各種數(shù)學(xué)思想方法的要求,有計劃地對學(xué)生進(jìn)行數(shù)學(xué)思想方法的訓(xùn)練,對于提高學(xué)生的數(shù)學(xué)素質(zhì)和數(shù)學(xué)課堂教學(xué)的質(zhì)量非常有益。本文結(jié)合小學(xué)數(shù)學(xué)教學(xué)僅就幾種綜合性的數(shù)學(xué)思想方法作一探討。
一、聯(lián)想能力的訓(xùn)練聯(lián)想
是由一種事物的觀念想到另一事物的觀念的心理過程。教育心理學(xué)認(rèn)為,聯(lián)想既是一種記憶方法,也是一種思維能力。其種類包括縱、橫向的單維聯(lián)想和立體交叉式的多維聯(lián)想。多維聯(lián)想是指對眼前呈現(xiàn)的問題,從多角度進(jìn)行思考以尋求問題解決的聯(lián)想方法,它又包括條件的多維聯(lián)想和解題方法的多維聯(lián)想。例如,我們由完成與未完成工程量的比是"5∶6"這一條件,可以聯(lián)想到下列可做逆推的其他條件:已完成的占總工程量的511,未完成的占總工程量的611,未完成的是已完成的115倍;已完成的是未完成的56,未完成的比己完成的多16,已完成的比未完成的少16等。此關(guān)不過,學(xué)生解分?jǐn)?shù)應(yīng)用題難的現(xiàn)狀就不易解決。現(xiàn)在用上述條件組編一個應(yīng)用題:"一個建筑隊20天完成一件工程的511,再干幾天可以完成該工程?"我們從不同角度進(jìn)行聯(lián)想,可得到以下解題方案:(1)用剩下的工作量除以每天的工作效率,列式:(1-511)÷(511÷20)或(11-5)÷(5÷20);(2)先求出完成該工程的總天數(shù)再減去已干的天數(shù),列式:20÷511-20;(3)看剩下的工作量是已完成工作量的幾倍,就有幾個20天,列式:20×〔(1-511)÷511〕;(4)看已完成的工作量是未完成的工作量的幾分之幾,由已知一個數(shù)的幾分之幾是多少,求這個數(shù)的算法可列式為:20÷〔511÷(1-511)〕。進(jìn)行多維聯(lián)想的能力訓(xùn)練,要圍繞一定的目的,要做到適時、適度、因人而異,要善于發(fā)現(xiàn)最佳解題思路,使其真正達(dá)到培養(yǎng)學(xué)生創(chuàng)造性思維的目的。
二、轉(zhuǎn)化能力的訓(xùn)練
轉(zhuǎn)化思想是數(shù)學(xué)的基本思想之一,是一種十分重要的教與學(xué)的策略。常見的轉(zhuǎn)化思維方法有量的轉(zhuǎn)化、式的轉(zhuǎn)化、類比轉(zhuǎn)化等,考慮到數(shù)學(xué)的研究對象--數(shù)與形,在教學(xué)中有意識地對學(xué)生進(jìn)行數(shù)形轉(zhuǎn)化能力的訓(xùn)練就顯得尤其重要。所謂數(shù)形轉(zhuǎn)化觀是把數(shù)、形問題從一種表示形態(tài)轉(zhuǎn)化成另一種表示形態(tài)或數(shù)形相互轉(zhuǎn)化的思想和方法。從這一表述可以看出,數(shù)形轉(zhuǎn)化有數(shù)的轉(zhuǎn)化、形的轉(zhuǎn)化和數(shù)與形的相互轉(zhuǎn)化三種具體形態(tài)。數(shù)的轉(zhuǎn)化要通過恒等變形,借助數(shù)的分解、變換數(shù)的位置或?qū)?shù)進(jìn)行重新調(diào)整組合以及利用相關(guān)關(guān)系等方式進(jìn)行。如,0.25根據(jù)需要可轉(zhuǎn)化為25%,可以轉(zhuǎn)化為14,還可以轉(zhuǎn)化為1∶4。
通過數(shù)的轉(zhuǎn)化可使運算過程簡單明了,達(dá)到計算對、快、巧的要求。形的轉(zhuǎn)化要通過割、補(bǔ)、拼等操作技能,主要借助等積變形來實現(xiàn)轉(zhuǎn)化。既可以把整體轉(zhuǎn)化為部分,又可以把部分拼成整體。如,在推導(dǎo)梯形的面積計算公式時可制作轉(zhuǎn)動式幻燈片進(jìn)行演示,使學(xué)生清晰地看到兩個全等的梯形拼補(bǔ)成平行四邊形的方法,造成一種動態(tài)的視覺形象美,使演示過程更生動、有趣,給學(xué)生留下的印象也是深刻的。又如,求圖中陰影部分的面積(單位:厘米)。此題若按常規(guī)解法,不但計算繁瑣,而且因π取近似值,存在計算誤差。若把它看成是一個以內(nèi)外圓周長為上、下底,以2厘米為高的梯形,即利用"把曲線看作直線的思想",其計算量不但減少,而且提高了答題的準(zhǔn)確率。
數(shù)學(xué)思想方法分析論文
一、數(shù)學(xué)思想方法教學(xué)的心理學(xué)意義
美國心理學(xué)家布魯納認(rèn)為,“不論我們選教什么學(xué)科,務(wù)必使學(xué)生理解該學(xué)科的基本結(jié)構(gòu)?!彼^基本結(jié)構(gòu)就是指“基本的、統(tǒng)一的觀點,或者是一般的、基本的原理?!薄皩W(xué)習(xí)結(jié)構(gòu)就是學(xué)習(xí)事物是怎樣相互關(guān)聯(lián)的。”數(shù)學(xué)思想與方法為數(shù)學(xué)學(xué)科的一般原理的重要組成部分。下面從布魯納的基本結(jié)構(gòu)學(xué)說中來看數(shù)學(xué)思想、方法教學(xué)所具有的重要意義。
第一,“懂得基本原理使得學(xué)科更容易理解”。心理學(xué)認(rèn)為,“由于認(rèn)知結(jié)構(gòu)中原有的有關(guān)觀念在包攝和概括水平上高于新學(xué)習(xí)的知識,因而新知識與舊知識所構(gòu)成的這種類屬關(guān)系又可稱為下位關(guān)系,這種學(xué)習(xí)便稱為下位學(xué)習(xí)?!碑?dāng)學(xué)生掌握了一些數(shù)學(xué)思想、方法,再去學(xué)習(xí)相關(guān)的數(shù)學(xué)知識。就屬于下位學(xué)習(xí)了。下位學(xué)習(xí)所學(xué)知識“具有足夠的穩(wěn)定性,有利于牢固地固定新學(xué)習(xí)的意義,”即使新知識能夠較順利地納入到學(xué)生已有的認(rèn)知結(jié)構(gòu)中去。學(xué)生學(xué)習(xí)了數(shù)學(xué)思想、方法就能夠更好地理解和掌握數(shù)學(xué)內(nèi)容。
第二,有利于記憶。布魯納認(rèn)為,“除非把一件件事情放進(jìn)構(gòu)造得好的模型里面,否則很快就會忘記?!薄皩W(xué)習(xí)基本原理的目的,就在于保證記憶的喪失不是全部喪失,而遺留下來的東西將使我們在需要的時候得以把一件件事情重新構(gòu)思起來。高明的理論不僅是現(xiàn)在用以理解現(xiàn)象的工具,而且也是明天用以回憶那個現(xiàn)象的工具?!庇纱丝梢?,數(shù)學(xué)思想、方法作為數(shù)學(xué)學(xué)科的“一般原理”,在數(shù)學(xué)學(xué)習(xí)中是至關(guān)重要的。無怪乎有人認(rèn)為,對于中學(xué)生“不管他們將來從事什么業(yè)務(wù)工作,唯有深深地銘刻于頭腦中的數(shù)學(xué)的精神、數(shù)學(xué)的思維方法、研究方法,卻隨時隨地發(fā)生作用,使他們受益終生?!?/p>
第三,學(xué)習(xí)基本原理有利于“原理和態(tài)度的遷移”。布魯納認(rèn)為,“這種類型的遷移應(yīng)該是教育過程的核心——用基本的和一般的觀念來不斷擴(kuò)大和加深知識?!辈懿藕步淌谝舱J(rèn)為,“如果學(xué)生認(rèn)知結(jié)構(gòu)中具有較高抽象、概括水平的觀念,對于新學(xué)習(xí)是有利的,”“只有概括的、鞏固的和清晰的知識才能實現(xiàn)遷移?!泵绹睦韺W(xué)家賈德通過實驗證明,“學(xué)習(xí)遷移的發(fā)生應(yīng)有一個先決條件,就是學(xué)生需先掌握原理,形成類比。才能遷移到具體的類似學(xué)習(xí)中?!睂W(xué)生學(xué)習(xí)數(shù)學(xué)思想、方法有利于實現(xiàn)學(xué)習(xí)遷移,特別是原理和態(tài)度的遷移,從而可以較快地提高學(xué)習(xí)質(zhì)量和數(shù)學(xué)能力。
第四,強(qiáng)調(diào)結(jié)構(gòu)和原理的學(xué)習(xí),“能夠縮挾‘高級’知識和‘初級’知識之間的間隙?!币话愕刂v,初等數(shù)學(xué)與高等數(shù)學(xué)的界限還是比較清楚的,特別是中學(xué)數(shù)學(xué)的許多具體內(nèi)容在高等數(shù)學(xué)中不再出現(xiàn)了,有些術(shù)語如方程、函數(shù)等在高等數(shù)學(xué)中要賦予它們以新的涵義。而在高等數(shù)學(xué)中幾乎全部保留下來的只有中學(xué)數(shù)學(xué)思想和方法以及與其關(guān)系密切的內(nèi)容,如集合、對應(yīng)等。因此,數(shù)學(xué)思想、方法是聯(lián)結(jié)中學(xué)數(shù)學(xué)與高等數(shù)學(xué)的一條紅線。
萊布尼茨數(shù)學(xué)思想統(tǒng)一論文
戈特弗里德·威廉·萊布尼茨(1646~1716)對數(shù)學(xué)有兩項突出貢獻(xiàn):發(fā)明了符號邏輯和微積分。由于這兩項成就分屬不同的數(shù)學(xué)分支,人們也往往將其看作萊布尼茨的兩種不同工作,忽視了它們之間的一致性,這為研究萊布尼茨的數(shù)學(xué)思想、完整地理解數(shù)學(xué)史和科學(xué)發(fā)現(xiàn)的規(guī)律帶來不少困難。本文的目的就是試圖理解的揭示這種一致性。
一、符號邏輯:“通用數(shù)學(xué)語言”
萊布尼茨對數(shù)學(xué)問題的最早探索和最初貢獻(xiàn)是試圖沿著笛卡爾和霍布斯的思路建構(gòu)所謂的“通用語言”。這種語言是一種用來代替自然語言的人工語言,它通過字母和符號進(jìn)行邏輯分析與綜合,把一般邏輯推理的規(guī)則改變?yōu)檠菟阋?guī)則,以便更精確更敏捷地進(jìn)行推理。([1],p.8)或者說,“通用語言”是一套表達(dá)思想和事物的符號系統(tǒng),利用這些符號可以進(jìn)行演算并推出各種知識。在《論組合術(shù)》中,二十歲的萊布尼茨曾立志要創(chuàng)設(shè)“一個一般的方法,在這個方法中所有推理的真實性都要簡化為一種計算。同時,這會成為一種通用語言或文字,但與那些迄今為止設(shè)想出來的全然不同;因為它里面的符號甚至詞匯要指導(dǎo)推理;錯誤,除去那些事實上的錯誤,只會是計算上的錯誤。形成或者發(fā)明這種語言或者記號會是非常困難的,但是可以不借助任何詞典就很容易懂得它?!保ǎ?],p.123)在1679年9月8日給惠更斯的信中他又寫道,有一個“完全不同于代數(shù)的新符號語言,它對于精確而自然地在腦子里再現(xiàn)(不用圖形)依賴于想象的一切有很大的好處?!闹饕в迷谟谀軌蛲ㄟ^記號〔符號〕的運算完成結(jié)論和推理,這些記號不經(jīng)過非常精細(xì)的推敲或使用大量的點和線會把它們混淆起來,因而不得不作出無窮多個無用的試驗;另一方面,這個方法會確切而簡單地導(dǎo)向〔所需要的〕結(jié)果。我相信力學(xué)差不多可以象幾何學(xué)一樣用這種方法去處理?!保ǎ?],p.151~152)
綜合萊布尼茨零零碎碎的設(shè)想,他的宏偉規(guī)劃大體旨在創(chuàng)造兩種工具:其一是通用語言,其二是推理演算(calaulusratiocinator)。前者的主要使命是消除現(xiàn)存語言的局限性和不規(guī)則性,使新語言變成世界上人人會用的具有簡明符號、合理規(guī)則的語言,規(guī)定符號的演變規(guī)則與運算規(guī)則,使邏輯演變依照一條明確的道路進(jìn)行下去,進(jìn)而解決所有可用語言表達(dá)的問題。
為此,萊布尼茨做了兩方面的努力:一是尋找能夠代表所有概念并可認(rèn)作最根本的不可分析的符號;二是給出表述諸如斷定、合取、析取、否定、全稱、特殊、條件聯(lián)結(jié)等形式概念的設(shè)計。關(guān)于第一方面,萊布尼茨首次設(shè)想用數(shù)目代表原初概念,而邏輯演算則用如同算術(shù)中的乘或除來代替。他認(rèn)為用這種數(shù)字的不同方式排列組合,進(jìn)行各種運算,就可產(chǎn)生無窮多的復(fù)合概念。這一思想后來改進(jìn)為以素數(shù)代表基本概念,而復(fù)合詞項即可借分解相應(yīng)的數(shù)字成為它們的素數(shù)因子來加以分析。以“人是理智動物”為例,用素數(shù)“3”代表“動物”、“5”代表“理智”,則“人”即以“15=3.5”代表。為了更好地構(gòu)設(shè)“通用語言”,萊布尼茨又以設(shè)想的“人類概念字母表”為語言詞匯基礎(chǔ)創(chuàng)制了一些邏輯符號,如“∪”(并)、“∩”(交)等,一直沿用下來。
關(guān)于第二方面,萊布尼茨的工作大致可以1679、1686、1690三個年代為標(biāo)志劃分為三個階段。([4],pp.271~273)
初中數(shù)學(xué)數(shù)形結(jié)合思想教學(xué)論文
一、滲透數(shù)形結(jié)合的思想,養(yǎng)成用數(shù)形結(jié)合分析問題的意識
每個學(xué)生在日常生活中都具有一定的圖形知識,如繩子和繩子上的結(jié)、刻度尺與它上面的刻度,溫度計與其上面的溫度,我們每天走過的路線可以看作是一條直線,教室里每個學(xué)生的坐位等等,我們利用學(xué)生的這一認(rèn)識基礎(chǔ),把生活中的形與數(shù)相結(jié)合遷移到數(shù)學(xué)中來,在教學(xué)中進(jìn)行數(shù)學(xué)數(shù)形結(jié)合思想的滲透,挖掘教材提供的機(jī)會,把握滲透的契機(jī)。如數(shù)與數(shù)軸,一對有序?qū)崝?shù)與平面直角坐標(biāo)系,一元一次不等式的解集與一次函數(shù)的圖象,二元一次方程組的解與一次函數(shù)圖象之間的關(guān)系等,都是滲透數(shù)形結(jié)合思想的很好機(jī)會。
如:直線是由無數(shù)個點組成的集合,實數(shù)包括正實數(shù)、零、負(fù)實數(shù)也有無數(shù)個,因為它們的這個共性所以用直線上無數(shù)個點來表示實數(shù),這時就把一條直線規(guī)定了原點、正方向和單位長度,把這條直線就叫做數(shù)軸。建立了數(shù)與直線上的點的結(jié)合。即:數(shù)軸上的每個點都表示一個實數(shù),每個實數(shù)都能在數(shù)軸上找到表示它的點,建立了實數(shù)與數(shù)軸上的點的一一對應(yīng)關(guān)系,由此讓學(xué)生理解了相反數(shù)、絕對值的幾何意義。建立數(shù)軸后及時引導(dǎo)學(xué)生利用數(shù)軸來進(jìn)行有理數(shù)的比較大小,學(xué)生通過觀察、分析、歸納總結(jié)得出結(jié)論:通常規(guī)定右邊為正方向時,在數(shù)軸上的兩個數(shù),右邊的總大于左邊的,正數(shù)大于零,零大于負(fù)數(shù)。讓學(xué)生理解數(shù)形結(jié)合思想在解決問題中的應(yīng)用。為下面進(jìn)一步學(xué)習(xí)數(shù)形結(jié)合思想奠定基礎(chǔ)。
-1--,--3---,---6--,----10--,--15----,--21----,---28--,--36---……-----在講解通過形來說明數(shù)的找規(guī)律問題中應(yīng)該從形中找數(shù)。如第一個圖形有一個小正方形,第二個圖形有三個小正方形,第三個圖形有六個小正方形,那么第四個圖形將有幾個小正方形呢?從前三個中尋找規(guī)律,第二個比第一個多兩個小正方形,第三個比第二個多三個小正方形,那么第四個就比第三個多四個小正方形,第四個圖形就有十個小正方形,第五個比第四個多五個小正方形,那么第五個就有十五個小正方形,依次類推,第六個圖形就有二十一個小正方形,第七個圖形就有二十八個小正方形,第八個圖形就有三十六個小正方形。那么上面的橫線上分別填上10、15、21、28、36,第n個圖形就應(yīng)該有1+2+3+4+5+6……+n=個小正方形。這也體現(xiàn)數(shù)形結(jié)合的思想。
例2:小明的父母出去散步,從家走了20分到一個離家900米的報亭,母親隨即按原速返回。父親看了10分報紙后,用了15分返回家。你能在下面的平面直角坐標(biāo)系中畫出表示父親和母親離家的時間和距離之間的關(guān)系嗎?
結(jié)合探索規(guī)律和生活中的實際問題,反復(fù)滲透,強(qiáng)化數(shù)學(xué)中的數(shù)形結(jié)合思想,使學(xué)生逐步形成數(shù)學(xué)學(xué)習(xí)中的數(shù)形結(jié)合的意識。并能在應(yīng)用數(shù)形結(jié)合思想的時候注意一些基本原則,如是知形確定數(shù)還是知數(shù)確定形,在探索規(guī)律的過程中應(yīng)該遵循由特殊到一般的思路進(jìn)行,從而歸納總結(jié)出一般性的結(jié)論。
熱門標(biāo)簽
數(shù)學(xué)論文 數(shù)學(xué)建模論文 數(shù)學(xué)論文 數(shù)學(xué)畢業(yè)論文 數(shù)學(xué)教學(xué)論文 數(shù)學(xué)教學(xué)案例 數(shù)學(xué)教育論文 數(shù)學(xué)文化論文 數(shù)學(xué)初二論文 數(shù)學(xué)教案
相關(guān)文章
2初中數(shù)學(xué)導(dǎo)學(xué)互動教學(xué)模式探討
3初中數(shù)學(xué)導(dǎo)學(xué)案教學(xué)研究